The Schur multiplier of McLaughlin's simple group
نویسندگان
چکیده
منابع مشابه
On a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group
Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...
متن کاملsecond cohomology of lie rings and the schur multiplier
we exhibit an explicit construction for the second cohomology group $h^2(l, a)$ for a lie ring $l$ and a trivial $l$-module $a$. we show how the elements of $h^2(l, a)$ correspond one-to-one to the equivalence classes of central extensions of $l$ by $a$, where $a$ now is considered as an abelian lie ring. for a finite lie ring $l$ we also show that $h^2(l, c^*) cong m(l)$...
متن کاملThe Schur Multiplier, Profinite Completions and Decidability
We fix a finitely presented group Q and consider short exact sequences 1 → N → Γ → Q → 1 with Γ finitely generated. The inclusion N ↪→ Γ induces a morphism of profinite completions N̂ → Γ̂. We prove that this is an isomorphism for all N and Γ if and only if Q is super-perfect and has no proper subgroups of finite index. We prove that there is no algorithm that, given a finitely presented, residua...
متن کاملschur multiplier norm of product of matrices
for a ∈ mn, the schur multiplier of a is defined as s a(x) =a ◦ x for all x ∈ mn and the spectral norm of s a can be stateas ∥s a∥ = supx,0 ∥a ∥x ◦x ∥ ∥. the other norm on s a can be definedas ∥s a∥ω = supx,0 ω(ω s( ax (x ) )) = supx,0 ωω (a (x ◦x ) ), where ω(a) standsfor the numerical radius of a. in this paper, we focus on therelation between the norm of schur multiplier of product of matric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archiv der Mathematik
سال: 1987
ISSN: 0003-889X,1420-8938
DOI: 10.1007/bf01196350